Smoothing proximal gradient method for general structured sparse regression
نویسندگان
چکیده
منابع مشابه
A Smoothing Proximal Gradient Method for General Structured Sparse Regression
We study the problem of estimating high dimensional regression models regularized by a structured sparsity-inducing penalty that encodes prior structural information on either the input or output variables. We consider two widely adopted types of penalties of this kind as motivating examples: 1) the general overlapping-group-lasso penalty, generalized from the group-lasso penalty; and 2) the gr...
متن کاملSMOOTHING PROXIMAL GRADIENT METHOD FOR GENERAL STRUCTURED SPARSE REGRESSION By
We study the problem of estimating high dimensional regression models regularized by a structured sparsity-inducing penalty that encodes prior structural information on either the input or output variables. We consider two widely adopted types of penalties of this kind as motivating examples: 1) the general overlapping-group-lasso penalty, generalized from the group-lasso penalty; and 2) the gr...
متن کاملSmoothing proximal gradient method for general structured sparse regression
We study the problem of estimating high dimensional regression models regularized by a structured-sparsity-inducing penalty that encodes prior structural information on either input or output sides. We consider two widely adopted types of such penalties as our motivating examples: 1) overlapping-group-lasso penalty, based on the l1/l2 mixed-norm penalty, and 2) graph-guided fusion penalty. For ...
متن کاملSmoothing Proximal Gradient Method for General Structured Sparse Learning
We study the problem of learning high dimensional regression models regularized by a structured-sparsity-inducing penalty that encodes prior structural information on either input or output sides. We consider two widely adopted types of such penalties as our motivating examples: 1) overlapping group lasso penalty, based on the `1/`2 mixed-norm penalty, and 2) graph-guided fusion penalty. For bo...
متن کاملAn Efficient Proximal Gradient Method for General Structured Sparse Learning
We study the problem of learning high dimensional regression models regularized by a structured-sparsity-inducing penalty that encodes prior structural information on either input or output sides. We consider two widely adopted types of such penalties as our motivating examples: 1) overlapping-group-lasso penalty, based on `1/`2 mixed-norm, and 2) graph-guided fusion penalty. For both types of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Applied Statistics
سال: 2012
ISSN: 1932-6157
DOI: 10.1214/11-aoas514